铁皮石斛钙依赖蛋白激酶基因的分子克隆及特征分析

张岗,赵明明,张大为,宋超,李标,郭顺星*

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (11) : 958-963.

PDF(1964 KB)
PDF(1964 KB)
中国药学杂志 ›› 2013, Vol. 48 ›› Issue (11) : 958-963. DOI: 10.11669/cpj.2013.12.005
论著

铁皮石斛钙依赖蛋白激酶基因的分子克隆及特征分析

  • 张岗12,赵明明1,张大为1,宋超1,李标1,郭顺星1*
作者信息 +

Molecular Cloning and Characterization of Calcium-Dependent Protein Kinase Genes in Dendrobium officinale

  • ZHANG Gang1,2, ZHAO Ming-ming1, ZHANG Da-wei1, SONG Chao1, LI Biao1, GUO Shun-xing1*
Author information +
文章历史 +

摘要

目的克隆铁皮石斛(Dendrobiumofficinale)钙依赖蛋白激酶(calcium-dependentproteinkinases,CDPKs)基因并进行分子特征分析。方法利用反转录PCRC(RT-PCR)和CDNA末端快速扩增(RACE)技术,从铁皮石斛叶cDNA中分离CDPKs基因,并进行编码蛋白等电点、分子量、保守结构域、信号肽以及跨膜域等生物信息学分析;采用DNASTAR和MEGA4软件进行氨基酸多序列比对和进化树构建分析;借助实时荧光定量PCR技术检测基因组织表达模式。结果分离到两个铁皮石斛钙依赖蛋白激酶基因DoCPK2DoCPK3(GenBank注册号JX219469和JX219470),全长为2119和2418bp,各编码一条由541和536个氨基酸组成的肽链,相对分子质量分别为60.46×103和60.30×103,等电点6.14和6.32;两个基因编码的蛋白不含信号肽,均具有19个氨基酸的跨膜域(分别为248~266和243~261位)和CDPKs蛋白家族保守的丝氨酸/苏氨酸蛋白激酶的结构域及Ca2+结合EF-hand基元。两个基因与植物CDPKs基因同源性很高(67%~81%),与小麦和水稻等单子叶植物CDPKs基因亲缘关系较近;DoCPK2DoCPK3基因在组织中为组成型表达,前者在根和原球茎中表达量较高,后者在茎和种子中的表达量较低。结论分离到两个铁皮石斛钙依赖蛋白激酶基因DoCPK2DoCPK3,为进一步揭示其在植物生长发育和逆境胁迫等过程中的生物学功能奠定基础。

Abstract

OBJECTIVE To clone and characterize calcium-dependent protein kinases (CDPKs) genes in Dendrobium officinale Kimura et Migo. METHODS Reverse transcription PCR(RT-PCR) and rapid-amplification of cDNA ends (RACE) methods were used to isolate CDPKs genes from the leaf cDNA of D. officinale. Characteristics including the molecular weight, theoretical pI (isoelectric point), conserved domain, transmembrane structure, signal peptide, and subcellular localization of the deduced proteins were analyzed using serials of bioinformatics algorithms. The analyses of multiple alignment and phylogenetic tree were respectively performed using DNASTAR and MEGA4. Tissue specific expression patterns were determined using real-time quantitative PCR (qPCR) analyses. RESULTS Two full length genes DoCPK2 and DoCPK3 (GenBank accessions JX219469 and JX219470), 2 119 and 2 418 bp in length, respectively, were obtained. DoCPK2 was deduced to a 541 aa (amino acid) protein with a molecular weight of 60.46?103 and a pI of 6.14, while DoCPK3 encoded a 536 aa protein with a molecular weight of 60.30?103 and a pI of 6.32. The two deduced proteins, without signal peptide, both contained the conserved caniocal serine/threonine- protein kinase catalytic domain, Ca2+ binding EF hand motifs, and a 19 aa transmembrane structure at 248-266 and 243-261 aa position, respectively. They were highly homologues (67%-81%) to the plant CDPKs genes, and were mostly close to monocots CDPKs genes from wheat and rice. DoCPK2 and DoCPK3 were constitutively expressed among the five tissues. DoCPK2 transcripts were more abundant in the roots and PLBs (protocorm-like bodies), while the transcription levels of DoCPK3 were repressed in the seeds and stems. CONCLUSION Two calcium-dependent kinases genes DoCPK2 and DoCPK3 are identified from the valuable herb D. officinale, which will be useful for further functional determination of the genes involving in the growth, development, biotic and abiotic responses in D. officinale.

关键词

铁皮石斛 / 蛋白激酶 / 基因 / 表达模式 / 分子克隆

Key words

Dendrobium officinale / protein kinase / gene / expression pattern / molecular cloning

引用本文

导出引用
张岗,赵明明,张大为,宋超,李标,郭顺星*. 铁皮石斛钙依赖蛋白激酶基因的分子克隆及特征分析[J]. 中国药学杂志, 2013, 48(11): 958-963 https://doi.org/10.11669/cpj.2013.12.005
ZHANG Gang,, ZHAO Ming-ming, ZHANG Da-wei, SONG Chao, LI Biao, GUO Shun-xing*. Molecular Cloning and Characterization of Calcium-Dependent Protein Kinase Genes in Dendrobium officinale[J]. Chinese Pharmaceutical Journal, 2013, 48(11): 958-963 https://doi.org/10.11669/cpj.2013.12.005
中图分类号: R931   

参考文献

[1] HARPER J F, HARMON A. Plants, symbiosis and parasites: A calcium signaling connection . Nature, 2005, 6(7):555-566.

[2] RAY S, AQARWAL P, ARORA R, et al. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica) . Mol Genet Genomics, 2007, 278(5): 493-505.

[3] HONG Y, TAKANO M, LIU C M, et al. Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana . Plant Mol Biol, 1996, 30(6): 1259-1275.

[4] CHICO J M, RACES M, TLLEZ-INN M T, et al. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants . Plant Physiol, 2002, 128(1): 256-270.

[5] SZCZEGIELNIAK J, BORKIEWICZ L, SZURMAK B, et al. Maize calcium-dependent protein kinase (ZmCPK11): Local and systemic response to wounding, regulation by touch and components of jasmonate signaling . Physiol Plant, 2012, 146(1):1-14.

[6] KOBAYASHI M, OHURA I, KAWAKITA K, et al. Calcium dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase . Plant Cell, 2007, 19(3):1065-1080.

[7] GARGANTINI P R, GONZALEZ-RIZZO S, CHINCHILLA D, et al. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula . Plant J, 2006, 48(6):843-856.

[8] CAMPOS-SORIANO L, GóMEZ-ARIZA J, BONFANTE P, et al. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis . BMC Plant Biol, 2011, 11(1):90.

[9] CHENG S H, WILLMANN M R, CHEN H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium dependent protein kinase gene family . Plant Physiol, 2002, 129(2): 469-485.

LI A L, ZHU Y F, TAN X M, et al. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.) . Plant Mol Biol, 2008, 66(4):429-443.

TAI S S, LIU G S, SUN Y H, et al. Cloning and expression of calcium-dependent protein kinase (CDPK) gene family in Nicotiana tabacum . Sci Agricul Sin (中国农业科学), 2009, 42(10): 3600-3608.

XUE B, XIA X L, YI W L. Bioinformatics analysis of CDPK gene family in Populus . Nonwood Forest Res (经济林研究), 2010, 28(1): 20-25.

LI Y, WANG C L, WANG F F, et al. Phenolic components and flavanones from Dendrobium candidum . Chin Pharm J (中国药学杂志), 2010, 45(13): 975-979.

ZHANG L C, CHEN J, LV Y L, et al. Mycena sp., a mycorrhizal fugus of the orchid Dendrobium officinale . Mycol Progress, 2012, 11(2): 395-401.

JIN H, XU Z X, CHEN J H, et al. Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture . Chine J Plant Ecol (植物生态学报), 2009, 33(3): 433-441.

ZHANG G, SONG C, ZHAO M M, et al. Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum . Biologia, 2012, 67(2): 360-368.

PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR . Nucl Acid Res, 2001, 29(19): 45.

KOZAK M. An analysis of 50-noncoding sequences from 699 vertebrate messenger RNAs . Nucl Acid Res, 1987, 15: 8125-8132.

KISELEV V K, TURLENKO A V, ZHURAVLEV Y N. Structure and expression profiling of a novel calcium-dependent protein kinase gene PgCDPK1a in roots, leaves, and cell cultures of Panax ginseng . Plant Cell Tiss Organ Cult, 2010, 103(2):197-204.

ZHANG H, CAI W W, ZHANG S Z, et al. Cloning and expression analysis of calcium-dependent protein kinase gene 2 in Dracaena draco . Chin J Trop Crops (热带作物学报), 2010, 31(7): 1130-1136.

MARTIN M L, BUSCONI L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation . Plant J, 2000, 24(4):429-435.

基金

国家自然科学基金资助项目(31070300,31101608,31170314)

PDF(1964 KB)

Accesses

Citation

Detail

段落导航
相关文章

/